博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ICP、MRR、BKA等特性
阅读量:4913 次
发布时间:2019-06-11

本文共 4987 字,大约阅读时间需要 16 分钟。

一、Index Condition Pushdown(ICP)

Index Condition Pushdown (ICP)是 mysql 使用索引从表中检索行数据的一种优化方式,从mysql5.6开始支持,mysql5.6之前,存储引擎会通过遍历索引定位基表中的行,然后返回给Server层,再去为这些数据行进行WHERE后的条件的过滤。mysql 5.6之后支持ICP后,如果WHERE条件可以使用索引,MySQL 会把这部分过滤操作放到存储引擎层,存储引擎通过索引过滤,把满足的行从表中读取出。ICP能减少引擎层访问基表的次数和 Server层访问存储引擎的次数。

  • ICP的目标是减少从基表中读取操作的数量,从而降低IO操作

  • 对于InnoDB表,ICP只适用于辅助索引

  • 当使用ICP优化时,执行计划的Extra列显示Using indexcondition提示

  • 数据库配置 optimizer_switch="index_condition_pushdown=on”;

使用场景举例

辅助索引INDEX (a, b, c)

SELECT * FROM peopleWHERE a='12345' AND b LIKE '%xx%'AND c LIKE '%yy%';

若不使用ICP:则是通过二级索引中a的值去基表取出所有a='12345'的数据,然后server层再对b LIKE '%xx%'AND c LIKE '%yy%' 进行过滤

若使用ICP:则b LIKE '%xx%'AND c LIKE '%yy%'的过滤操作在二级索引中完成,然后再去基表取相关数据

ICP特点

  • mysql 5.6中只支持 MyISAM、InnoDB、NDB cluster

  • mysql 5.6中不支持分区表的ICP,从MySQL 5.7.3开始支持分区表的ICP

  • ICP的优化策略可用于range、ref、eq_ref、ref_or_null 类型的访问数据方法

  • 不支持主建索引的ICP(对于Innodb的聚集索引,完整的记录已经被读取到Innodb Buffer,此时使用ICP并不能降低IO操作)

  • 当 SQL 使用覆盖索引时但只检索部分数据时,ICP 无法使用

  • ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例

二、Multi-Range Read (MRR)

MRR 的全称是 Multi-Range Read Optimization,是优化器将随机 IO 转化为顺序 IO 以降低查询过程中 IO 开销的一种手段,这对IO-bound类型的SQL语句性能带来极大的提升,适用于range ref eq_ref类型的查询

MRR优化的几个好处

使数据访问有随机变为顺序,查询辅助索引是,首先把查询结果按照主键进行排序,按照主键的顺序进行书签查找

减少缓冲池中页被替换的次数

批量处理对键值的操作

在没有使用MRR特性时

第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

select key_column, pk_column from tb where key_column=x order by key_column

第二步 通过第一步获取的主键来获取对应的值

for each pk_column value in rest do:select non_key_column from tb where pk_column=val

使用MRR特性时

第一步 先根据where条件中的辅助索引获取辅助索引与主键的集合,结果集为rest

select key_column, pk_column from tb where key_column = x order by key_column

第二步 将结果集rest放在buffer里面(read_rnd_buffer_size 大小直到buffer满了),然后对结果集rest按照pk_column排序,得到结果集是rest_sort

第三步 利用已经排序过的结果集,访问表中的数据,此时是顺序IO.

select non_key_column fromtb where pk_column in (rest_sort)

在不使用 MRR 时,优化器需要根据二级索引返回的记录来进行“回表”,这个过程一般会有较多的随机IO, 使用MRR时,SQL语句的执行过程是这样的:

  • 优化器将二级索引查询到的记录放到一块缓冲区中

  • 如果二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

  • 用户线程调用MRR接口取cluster index,然后根据cluster index 取行数据

  • 当根据缓冲区中的 cluster index取完数据,则继续调用过程 2) 3),直至扫描结束

通过上述过程,优化器将二级索引随机的 IO 进行排序,转化为主键的有序排列,从而实现了随机 IO 到顺序 IO 的转化,提升性能

此外MRR还可以将某些范围查询,拆分为键值对,来进行批量的数据查询,如下:

SELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000AND key_part2 = 10000;

表t上有二级索引(key_part1, key_part2),索引根据key_part1,key_part2的顺序排序。

若不使用MRR:此时查询的类型为Range,sql优化器会先将key_part1大于1000小于2000的数据取出,即使key_part2不等于10000,带取出之后再进行过滤,会导致很多无用的数据被取出

若使用MRR:如果索引中key_part2不为10000的元组越多,最终MRR的效果越好。优化器会将查询条件拆分为(1000,1000),(1001,1000),... (1999,1000)最终会根据这些条件进行过滤

相关参数

当mrr=on,mrr_cost_based=on,则表示cost base的方式还选择启用MRR优化,当发现优化后的代价过高时就会不使用该项优化

当mrr=on,mrr_cost_based=off,则表示总是开启MRR优化

SET  @@optimizer_switch='mrr=on,mrr_cost_based=on';

参数read_rnd_buffer_size 用来控制键值缓冲区的大小。二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序

三、Batched Key Access (BKA) 和 Block Nested-Loop(BNL)

Batched Key Access (BKA)  提高表 join 性能的算法。当被join的表能够使用索引时,就先排好顺序,然后再去检索被join的表,听起来和MRR类似,实际上MRR也可以想象成二级索引和 primary key的join

如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)

BKA原理

对于多表join语句,当MySQL使用索引访问第二个join表的时候,使用一个join buffer来收集第一个操作对象生成的相关列值。BKA构建好key后,批量传给引擎层做索引查找。key是通过MRR接口提交给引擎的(mrr目的是较为顺序)MRR使得查询更有效率。 

大致的过程如下:

  • BKA使用join buffer保存由join的第一个操作产生的符合条件的数据

  • 然后BKA算法构建key来访问被连接的表,并批量使用MRR接口提交keys到数据库存储引擎去查找查找。

  • 提交keys之后,MRR使用最佳的方式来获取行并反馈给BKA

BNL和BKA都是批量的提交一部分行给被join的表,从而减少访问的次数,那么它们有什么区别呢?

  • BNL比BKA出现的早,BKA直到5.6才出现,而NBL至少在5.1里面就存在。

  • BNL主要用于当被join的表上无索引

  • BKA主要是指在被join表上有索引可以利用,那么就在行提交给被join的表之前,对这些行按照索引字段进行排序,因此减少了随机IO,排序这才是两者最大的区别,但是如果被join的表没用索引呢?那就使用NBL

BKA和BNL标识

Using join buffer (Batched Key Access)和Using join buffer (Block Nested Loop)

相关参数

BAK使用了MRR,要想使用BAK必须打开MRR功能,而MRR基于mrr_cost_based的成本估算并不能保证总是使用MRR,官方推荐设置mrr_cost_based=off来总是开启MRR功能。打开BAK功能(BAK默认OFF):

SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

BKA使用join buffer size来确定buffer的大小,buffer越大,访问被join的表/内部表就越顺序。

BNL默认是开启的,设置BNL相关参数:

SET optimizer_switch=’block_nested_loop’

支持inner join, outer join, semi-join operations,including nested outer joins

BKA主要适用于join的表上有索引可利用,无索引只能使用BNL

 

四、总结

ICP(Index Condition Pushdown

Index Condition Pushdown是用索引去表里取数据的一种优化,减少了引擎层访问基表的次数和Server层访问存储引擎的次数,在引擎层就能够过滤掉大量的数据,减少io次数,提高查询语句性能

MRR(Multi-Range Read

是基于辅助/第二索引的查询,减少随机IO,并且将随机IO转化为顺序IO,提高查询效率。

  • 不使用MRR之前(MySQL5.6之前),先根据where条件中的辅助索引获取辅助索引与主键的集合,再通过主键来获取对应的值。辅助索引获取的主键来访问表中的数据会导致随机的IO(辅助索引的存储顺序并非与主键的顺序一致),随机主键不在同一个page里时会导致多次IO和随机读。

  • 使用MRR优化(MySQL5.6之后),先根据where条件中的辅助索引获取辅助索引与主键的集合,再将结果集放在buffer(read_rnd_buffer_size 直到buffer满了),然后对结果集按照pk_column排序,得到有序的结果集rest_sort。最后利用已经排序过的结果集,访问表中的数据,此时是顺序IO。即MySQL 将根据辅助索引获取的结果集根据主键进行排序,将无序化为有序,可以用主键顺序访问基表,将随机读转化为顺序读,多页数据记录可一次性读入或根据此次的主键范围分次读入,减少IO操作,提高查询效率。

 

Nested Loop Join算法

将驱动表/外部表的结果集作为循环基础数据,然后循环该结果集,每次获取一条数据作为下一个表的过滤条件查询数据,然后合并结果,获取结果集返回给客户端。Nested-Loop一次只将一行传入内层循环, 所以外层循环(的结果集)有多少行, 内存循环便要执行多少次,效率非常差。

Block Nested-Loop Join算法

将外层循环的行/结果集存入join buffer, 内层循环的每一行与整个buffer中的记录做比较,从而减少内层循环的次数。主要用于当被join的表上无索引。

Batched Key Access算法

当被join的表能够使用索引时,就先好顺序,然后再去检索被join的表。对这些行按照索引字段进行排序,因此减少了随机IO。如果被Join的表上没有索引,则使用老版本的BNL策略(BLOCK Nested-loop)。

转载于:https://www.cnblogs.com/zero-gg/p/9718852.html

你可能感兴趣的文章
自制密码管理系统
查看>>
成功者所应具有的九大素质
查看>>
学习爬虫:《Python网络数据采集》中英文PDF+代码
查看>>
多态、抽象类、接口、区别(java基础知识九)
查看>>
.NET笔试题集(二)
查看>>
原码, 反码, 补码 详解
查看>>
BZOJ4154 : [Ipsc2015]Generating Synergy
查看>>
我的一个小App——谈天气
查看>>
layer使用
查看>>
【DevExpress v17.2新功能预告】DevExtreme TreeList
查看>>
如何开启Linux双网卡的转发功能
查看>>
spring boot 配置跨域
查看>>
Fitnesse框架介绍(一)
查看>>
Fitnesse之框架介绍(二)
查看>>
Codeforces Round #FF (Div. 2) 题解
查看>>
Oracle SEQUENCE 具体说明
查看>>
fastjson JSONObject.toJSONString 出现 $ref: "$."的解决办法(重复引用)
查看>>
Mysql Programming CS 155P笔记(三)
查看>>
Spring系列之基本配置
查看>>
VS2010中的自动化测试(2)——单元测试
查看>>